Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 13: 1049458, 2022.
Article in English | MEDLINE | ID: covidwho-2236273

ABSTRACT

Introduction: A key feature of the COVID-19 pandemic has been the emergence of SARS-CoV-2 variants with different transmission characteristics. However, when a novel variant arrives in a host population, it will not necessarily lead to many cases. Instead, it may fade out, due to stochastic effects and the level of immunity in the population. Immunity against novel SARS-CoV-2 variants may be influenced by prior exposures to related viruses, such as other SARS-CoV-2 variants and seasonal coronaviruses, and the level of cross-reactive immunity conferred by those exposures. Methods: Here, we investigate the impact of cross-reactive immunity on the emergence of SARS-CoV-2 variants in a simplified scenario in which a novel SARS-CoV-2 variant is introduced after an antigenically related virus has spread in the population. We use mathematical modelling to explore the risk that the novel variant invades the population and causes a large number of cases, as opposed to fading out with few cases. Results: We find that, if cross-reactive immunity is complete (i.e. someone infected by the previously circulating virus is not susceptible to the novel variant), the novel variant must be more transmissible than the previous virus to invade the population. However, in a more realistic scenario in which cross-reactive immunity is partial, we show that it is possible for novel variants to invade, even if they are less transmissible than previously circulating viruses. This is because partial cross-reactive immunity effectively increases the pool of susceptible hosts that are available to the novel variant compared to complete cross-reactive immunity. Furthermore, if previous infection with the antigenically related virus assists the establishment of infection with the novel variant, as has been proposed following some experimental studies, then even variants with very limited transmissibility are able to invade the host population. Discussion: Our results highlight that fast assessment of the level of cross-reactive immunity conferred by related viruses against novel SARS-CoV-2 variants is an essential component of novel variant risk assessments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Cross Reactions
2.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2045001

ABSTRACT

Background New variants of SARS-CoV-2 are constantly discovered. Administration of COVID-19 vaccines and booster doses, combined with the application of non-pharmaceutical interventions (NPIs), is often used to prevent outbreaks of emerging variants. Such outbreak dynamics are further complicated by the population's behavior and demographic composition. Hence, realistic simulations are needed to estimate the efficiency of proposed vaccination strategies in conjunction with NPIs. Methods We developed an individual-based model of COVID-19 dynamics that considers age-dependent parameters such as contact matrices, probabilities of symptomatic and severe disease, and households' age distribution. As a case study, we simulate outbreak dynamics under the demographic compositions of two Israeli cities with different household sizes and age distributions. We compare two vaccination strategies: vaccinate individuals in a currently prioritized age group, or dynamically prioritize neighborhoods with a high estimated reproductive number. Total infections and hospitalizations are used to compare the efficiency of the vaccination strategies under the two demographic structures, in conjunction with different NPIs. Results We demonstrate the effectiveness of vaccination strategies targeting highly infected localities and of NPIs actively detecting asymptomatic infections. We further show that different optimal vaccination strategies exist for each sub-population's demographic composition and that their application is superior to a uniformly applied strategy. Conclusion Our study emphasizes the importance of tailoring vaccination strategies to subpopulations' infection rates and to the unique characteristics of their demographics (e.g., household size and age distributions). The presented simulation framework and findings can help better design future responses against the following emerging variants.

3.
R Soc Open Sci ; 8(11): 210704, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1503812

ABSTRACT

Pooling is a method of simultaneously testing multiple samples for the presence of pathogens. Pooling of SARS-CoV-2 tests is increasing in popularity, due to its high testing throughput. A popular pooling scheme is Dorfman pooling: test N individuals simultaneously, if the test is positive, each individual is then tested separately; otherwise, all are declared negative. Most analyses of the error rates of pooling schemes assume that including more than a single infected sample in a pooled test does not increase the probability of a positive outcome. We challenge this assumption with experimental data and suggest a novel and parsimonious probabilistic model for the outcomes of pooled tests. As an application, we analyse the false-negative rate (i.e. the probability of a negative result for an infected individual) of Dorfman pooling. We show that the false-negative rates under Dorfman pooling increase when the prevalence of infection decreases. However, low infection prevalence is exactly the condition when Dorfman pooling achieves highest throughput efficiency. We therefore urge the cautious use of pooling and development of pooling schemes that consider correctly accounting for tests' error rates.

4.
J Am Med Inform Assoc ; 28(12): 2562-2570, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1338716

ABSTRACT

OBJECTIVE: Testing individuals for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen causing the coronavirus disease 2019 (COVID-19), is crucial for curtailing transmission chains. Moreover, rapidly testing many potentially infected individuals is often a limiting factor in controlling COVID-19 outbreaks. Hence, pooling strategies, wherein individuals are grouped and tested simultaneously, are employed. Here, we present a novel pooling strategy that builds on the Bayesian D-optimal experimental design criterion. MATERIALS AND METHODS: Our strategy, called DOPE (D-Optimal Pooling Experimental design), is built on a novel Bayesian formulation of pooling. DOPE defines optimal pooled tests as those maximizing the mutual information between data and infection states. We estimate said mutual information via Monte-Carlo sampling and employ a discrete optimization heuristic to maximize it. RESULTS: We compare DOPE to other, commonly used pooling strategies, as well as to individual testing. DOPE dominates the other strategies as it yields lower error rates while utilizing fewer tests. We show that DOPE maintains this dominance for a variety of infection prevalence values. DISCUSSION: DOPE has several additional advantages over common pooling strategies: it provides posterior distributions of the probability of infection rather than only binary classification outcomes; it naturally incorporates prior information of infection probabilities and test error rates; and finally, it can be easily extended to include other, newly discovered information regarding COVID-19. CONCLUSION: DOPE can substantially improve accuracy and throughput over current pooling strategies. Hence, DOPE can facilitate rapid testing and aid the efforts of combating COVID-19 and other future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , Humans , Pandemics , Research Design
5.
J Travel Med ; 27(5)2020 Aug 20.
Article in English | MEDLINE | ID: covidwho-529772

ABSTRACT

BACKGROUND: Substantial limitations have been imposed on passenger air travel to reduce transmission of severe acute respiratory syndrome coronavirus 2 between regions and countries. However, as case numbers decrease, air travel will gradually resume. We considered a future scenario in which case numbers are low and air travel returns to normal. Under that scenario, there will be a risk of outbreaks in locations worldwide due to imported cases. We estimated the risk of different locations acting as sources of future coronavirus disease 2019 outbreaks elsewhere. METHODS: We use modelled global air travel data and population density estimates from locations worldwide to analyse the risk that 1364 airports are sources of future coronavirus disease 2019 outbreaks. We use a probabilistic, branching-process-based approach that considers the volume of air travelers between airports and the reproduction number at each location, accounting for local population density. RESULTS: Under the scenario we model, we identify airports in East Asia as having the highest risk of acting as sources of future outbreaks. Moreover, we investigate the locations most likely to cause outbreaks due to air travel in regions that are large and potentially vulnerable to outbreaks: India, Brazil and Africa. We find that outbreaks in India and Brazil are most likely to be seeded by individuals travelling from within those regions. We find that this is also true for less vulnerable regions, such as the United States, Europe and China. However, outbreaks in Africa due to imported cases are instead most likely to be initiated by passengers travelling from outside the continent. CONCLUSIONS: Variation in flight volumes and destination population densities creates a non-uniform distribution of the risk that different airports pose of acting as the source of an outbreak. Accurate quantification of the spatial distribution of outbreak risk can therefore facilitate optimal allocation of resources for effective targeting of public health interventions.


Subject(s)
Air Travel , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Risk Assessment , Africa/epidemiology , Airports , Betacoronavirus , COVID-19 , China/epidemiology , Communicable Diseases, Imported , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Europe/epidemiology , Global Health , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Population Surveillance , SARS-CoV-2 , South America/epidemiology , Travel Medicine , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL